弁護士会の読書

※本欄の記述はあくまで会員の個人的意見です。

宇宙

2014年12月22日

光とは何か


著者  江馬 一弘 、 出版  宝島社新書

 真空の空間では、目の前を通り過ぎる光線が見えることはない。目の前の宇宙空間は真っ暗にしか見えず、そこを光が通過していることには気がつかない。
 なぜなら、宇宙空間は、ほぼ真空であり、光を散乱されるものがほとんどないから。
光は、ほかの物質と出会うことで、初めて何かが始まる。
 光の正体は、空間を伝わる電気的な波である。
 光の三原則とは、光の直進、反射、屈折に関する法則のこと。光は、障害物にぶつからない限り、まっすぐに進む。
 光が2億9979万2458分の1秒間に進む距離が1メートルである。
 分子や原子などのミクロのレベルで考えると、鏡に反射したあとの光は、鏡に反射する前の光とは、厳密には「別のもの」。鏡にあたった光は、「そのまま」鏡を通過する。それとは別に別に、鏡に光が当たることで、鏡の中の分子や原子が振動して、光を放つ。その光が「反射光」として、人間の目に見えている。
 光が屈折するのは、光の速度が変化するため。光は透明な物体の中を進むとき、その速度は物体の種類によって変化する。それが光の屈折を生む。
 ダイヤモンドの中での光速は、真空中の4割ほどにまで減速する。
 宝石となる物質のほとんどは、屈折率が高い。
 光の色ごとに屈折の度合いが違うのは、プリズム中での光の速度が、色ごとにわずかだけど異なるため。
 赤色の光は原則の程度がやや小さいので、屈折する角度も小さい。
 紫色の光の速度の程度がやや大きいので、屈折する角度が大きい。昼間の空が青く見えるのは、空気中の分子が赤色の光よりも青色の光の方が強く散乱することが原因。
 海が青く見えるのは、散乱の効果よりも、水が青色の光を吸収する効果の影響が大きいから。ニュートンは、「光線に色はない」と言った。
 色とは、この世界に実在するものではなく、光の波長の違いを胸が「色」というイメージで認識しているだけ。つまり、色を実際に「見ている」のは脳であり、色という感覚をつくり出しているのは心である。
物質のなかで電子が振動すると、光(を含めた電磁波)が生まれる。
 電子が振動すると、振動する電場が生まれて、それが波のように空間を伝わっていく。それが光(を含めた電磁波)である。
 じつは、光は波ではない。光の正体は粒である。
 結局、光は波としての性質と、粒としての性質をあわせ持つ、不思議な存在なのである。
 フシギ、不思議、変テコリンな存在である光について、少しばかり頭を悩ませてみました。面白いですよね、こんな話って・・・。
(2014年7月刊。900円+税)

2014年11月25日

宇宙の果てはどうなっているのか?


著者  大内 正己 、 出版  宝島社

 たまには気宇壮大に、宇宙を眺めたいものです。今夜は、満月がこうこうと輝いています。
 頭上高く見る月と、ビルの屋上すれすれの月とでは、同じ大きさのはずなのに、まるで大きさが違います。目の錯覚だというのです。月の大きさにも大小があるとしか思えません。
 天文学者は大変ですね。昼間も仕事はしているのでしょうが、観測するのは、基本的に夜でしょう。みんなが寝静まっているときに、ひたすら目をこらして天文の動きを観測するなんて、ぞっとします。夜は、やはりぬくぬくと布団に入って、ぐっすり眠りこけたいものですよね。
 宇宙の歴史は138億年。ビッグバンによって宇宙が始まってから8億年たったころ、つまり宇宙の初期時代にある天体(銀河)を発見した。これをヒミコと名づけた。この銀河は、同時代のものに比べて10倍以上の大きさがあり、明るさも10倍あった。古代の宇宙にこれほど巨大でまぶしい銀河は、これまでこのヒミコ以外に見つかっていない。
 すごい話です。宇宙の始まりから8億年たっても、まだ、宇宙の初期だというのです。日頃の私たちの時間の流れからは、想像も出来ないスケールです。
 原子が生まれたのは宇宙の誕生から38億年後のこと。それまでは、まだまだ宇宙が熱すぎて、原子核と電子が結合できなかった。このころ、温度が3000度にまで下がってきたので、原子核と電子が結合して、水素原子とヘリウム原子が生まれた。電子が原子核と結合したことで、光を邪魔するものがなくなり、光は直進できるようになった。これを宇宙の晴れ上がりと呼ぶ。
 宇宙の中で、人間の知っている物質はわずか5%しかなく、残りの95%はよく分からないもので出来ている。
 古代マヤ文明は天体をよく観測していた。マヤ人が観測をもとに計算した1年は365.2420日だった。現在の観測によると、1年は365.2422日であるから、マヤ人の観測の精度はきわめて高かった。
 ヒミコは、3つの銀河が横一直線にきれいに並んでいる。どうしてなのか・・・。
 宇宙には、まだまだ、たくさんの解明すべき不思議があるのです。
 毎日のちまちましたことを忘れさせる書物でした。
(2014年9月刊。1300円+税)

2014年9月16日

宇宙のはじまりの星はどこにあるのか


著者  谷口 義明 、 出版  メディアファクトリー新書

人間の身体を形づくっている炭素やカルシウムといった原子は、もともと宇宙には存在しなかった。これらの原子ができるきっかけになったのは、「星の誕生」である。
 ガモフのアイデアは、「そんな考え方は、大ボラだ」と非難された。ビッグバンは、大爆発とともに、「大ボラ」を意味している。しかし、今では、このビッグバンこそ宇宙論の標準モデルとみなされている。
すばる望遠鏡は、世界で唯一、遠方かつ広範囲を観測できる「広視野カメラ」を搭載した大型望遠鏡だ。
 2006年には、日本の観測チームが望遠鏡を使って128.8億光年の遠方にある銀河の姿をとらえた。
すばるのカメラは、従来より大幅に軽量化している。カメラは材質からすべて見直し、口径が大きくなるほど困難になるレンズの加工にも手が加えられている。
 すばる望遠鏡の建設費は400億円かかった。私は、軍事予算に膨大なお金をかけるよりも、宇宙観測、そして、新薬開発にお金をかけるべきだと考えています。
 光が見える現象は、光子(フォトン)を目が拾っているから。ある物体から光が発せられると、その光の強度は距離の2乗に比例して弱くなってしまう。
 20年前まで、人類は100億光年以上も離れた銀河を観測することは出来なかった。しかし、今では、スバル望遠鏡をつかったら、肉眼で見える天体の1億分の1の明るさしかない天体まで見ることができる。
 宇宙が誕生したのは137億年前。そのため宇宙の大きさは137億光年だと思っている人が多いが、実際には宇宙が膨張しているため、もっと大きくなっており、直径にして940億光年もある。単純平均で光速の3.4倍で宇宙が膨張している。ええーっ、光速の3.4倍で宇宙が膨張しているなんて、どういうことなのでしょうか。光より早いものはないと言った(と思う)アインシュタインの言葉はどこに行ったのでしょうか・・・。
 1000億年後。そのまま膨張が加速を続けていけば、宇宙の膨張速度は光速をこえてしまう。これの意味するところは、星がいくら光を放っても、空間の膨張速度のほうが速くなってしまうため、遠ざかる星が放つ光は地球まで届かなくなるということ。つまり、宇宙のはじまりの星など、絶対に発見できなくなってしまう。
 天の川銀河には、全部で2000億個もの星(恒星)が存在している。そして、天の川は宇宙のなかに無数にある銀河の一つにすぎない。現在、宇宙にある銀河は、1000億個にのぼるとみられている。
 天の川銀河は、お隣のアンドロメダ銀河に除々に近づいている。この二つの銀河は50億年後には合体して、一つの銀河になる。二つの銀河の合体といっても、星同士の衝突は、まず起こらない。
天の川とアンドロメダが合体したとき、星同士が衝突する確率は、太平洋にスイカをランダムに2個落として、これらのスイカ同士がぶつかるほどの確率だ。
 なーるほど、このたとえはよく分かりますよね。それなら心配することなんかないやと思ってしまいます。
 ともかく宇宙の本を読むと、50億年後の衝突なんてスケールの話なのです。あと50年も生きていられるはずがない身として、50年ではなく50億年後だなんて、いったい何の話をしているのか、笑ってしまいます。たまには、そんなスケールで考えてみるのも、決して悪いことではありません。
(2013年4月刊。840円+税)

2014年5月19日

絵でわかる宇宙開発の技術


著者  藤井 孝蔵・並木 道義 、 出版  講談社

 ロケットがどうやって地球をとび出し、宇宙をとんでいくのか、そして、それをなぜ人間が制御できるのか、不思議でなりません。その不思議を少しでも解明するため、絵があるなら少しは分かると期待して読みはじめたのでした。
 結論からいうと、イメージは少しふくらみましたが、いやはや難しい。まだまだ分からないことだらけです。
 ロケットはなんといっても軽くつくらなければいけない。そのため、ミツバチの巣にあるような、ハニカムサンドイッチ構造をしている。
 ロケットの材料として複合材がつかわれ東レなどの日本の素材メーカーが貢献している。
 ロケットエンジンの燃焼室は4000度にもなる。この高温に耐えられるエンジンを設計しなければいけない。そのため冷却に工夫がこらされている。
 ロケット研究のなかで新幹線に役立つことがあったことが紹介されています。
 日本の新幹線にはトンネルが大変多い。超音速で狭くて長いトンネルは、豆鉄砲波と同じトンネル微気圧波をもたらし、被害を発生させる。そこで、今の新幹線の先頭車両は、くちばし型のとても長い流線型になっている。
ロケットの打ち上げは出来るだけ赤道に近い場所が選ばれている。地球の公転速度は赤道で時速1700キロメートル。つまり、地球は音よりも早く自転している。この地球の自転による表面速度を利用するため、ロケットは少しでも赤道に近い場所から打ち上げられている。
 でも、日頃、そんなに早く大地がまわっている(動いている)なんて、実感しませんよね。
今、人工衛星は3500機以上も宇宙を飛んでいる。ロシア1450機、アメリカ1113機。その次、3番目が日本の134機。中国133機なので、近く、日本は追い越されてしまう。
人工衛星が初めて飛んだのが1957年。ソ連のスプートニク1号。初めて人類が宇宙に出たのが1961年のガガーリン(ソ連)。「地球は青かった」という名セリフはよく知られている。
 宇宙に向かうロケットの信頼性は90~95%程度。10回から20回に1回は失敗する可能性がある。
 まだまだ、宇宙は遠い気がします。それにしても、アメリカは、戦争にばかりお金をつぎ込んで、宇宙開発を断念してしまっているのが、私としては残念です。
(2013年10月刊。2200円+税)

2014年2月17日

宇宙が始まる前には何があったのか?


著者  ローレンス・クラウス 、 出版  文芸春秋

 何もないところから何かが生じることはない。しかし、この常識は宇宙では通用しない。重力と量子力学のダイナミクスを考慮すると、常識はくつがえってしまう。それこそが科学の素晴らしいところ。私たちが目にするものすべてを、空っぽの空間から作り出すことが可能なのだ。
 この本で語られていることは、何年、何十年、何百年というものではなく、2兆年とか、まさしく気が遠くなりすぎるほどの次元の話です。もちろん、地球はおろか太陽だって50億年という寿命がとっくに尽きてしまっている先の話です。
 まあ、たまには、そんな雄大な宇宙の話に耳を傾け、目を見開いてもいいのではありませんか・・・。
私たちの身体を構成している原子のほとんどすべては、かつて爆発した星の内部に存在していたもの。私たちは、みな、文字どおり、星の子どもたちなのだ。私たちの身体は星屑(ほしくず)で出来ている。
光速より早く動くものはない。これが私たちの常識。しかし・・・。
 量子力学によれば、高い精度で粒子の運動速度を測定することができないほど短い時間ならば、その粒子は光よりも早い速度で動いてもかまわないということが示唆される。そして、もしも光より速い速度で動いているとしたら、アインシュタインによれば、その粒子は時間を逆行しているように振る舞うはずなのだ。
 なんということでしょうか。光速より早いと言うことは、時間を逆行することになるだなんて・・・。
アインシュタインが一般相対性理論を提唱したのは、わずか100年前のこと。そのころ、宇宙は永遠不変というのが世の中の常識だった。
 現代は、宇宙は膨張していることを知り、暗黒物質が宇宙にあることを知っている。空っぽのように見える空間エネルギーが含まれていて、それが宇宙の膨張を支配している。
 観測可能な宇宙は、これからどんどん光速より大きな速度で膨脹していく。つまり、未来になればなるほど、見えるものは減っていく。いま見えている銀河は、未来のある時点で、私たちからの後退速度が光速をこえ、それ以降は見えなくなる。その銀河は、地平線の彼方に消えてしまうのだ。
 これから、2兆年たつと、一部の銀河を除いて、すべての天体が文字どおり姿を消してしまう。つまり、今日、私たちの観測可能な宇宙にちりばめられている4000億の銀河は、すべて姿を消している。
 私たちの太陽は銀河系の辺境にある平凡な星の一つにすぎない。そして、銀河系は観測可能な宇宙にちりばめられている4000億個もの銀河の一つにすぎない。
 宇宙では、きわめて高い信頼度で、無から何かが生じることはありうる。
 空っぽの空間にもエネルギーが存在することが発見された。つまり、実は、空っぽの空間というのも複雑なものだった。適切な条件の下では、何もないところから何かが生じることは可能であるばかりか、必然だということ。
 高温・高密度のビッグバンの時期には、もともと物質と反物質とが同じだけ存在していたのだが、ある量子的なプロセスにより、物質の法が反物質よりもわずかに多くなるという小さな非対称性が生じた。そのおかげで、何もないところから、何かが生じた。それが、今日の宇宙にみられる星や銀河になっていた。
この本を読んで理解できたなんて思っていませんが、宇宙の始まる前には何があったのか、宇宙に終わりがあるのかという問いかけに対する答えの一つだと思い、最後まで興味深く読みとおしました。
(2014年2月刊。1600円+税)

2013年12月16日

宇宙になぜ我々が存在するのか

著者  村山 斉 、 出版  講談社ブルーバックス新書

この世のはじまり、広大・無限の宇宙が実は原始よりもはるかに小さかったというのです。信じられません・・・。
誕生した直後の宇宙は原子よりも17桁も小さかった。それをインフレーションで大きく引き伸ばして30桁以上も大きさになり、やっと3ミリの大きさになった。そこでビッグバンが起こり、宇宙のもっていたエネルギーが熱や光に変化し、宇宙は一気にあつくなり、ゆっくり大きくなっていった。宇宙は137億年もかけて少しずつ大きくなっていった。
宇宙が3キロメートルぐらいの大きさになったとき、粒子と反粒子のバランスが崩れた。宇宙に同じ数だけ出来ていた粒子と反粒子は、どこかで反粒子が粒子に変化したと考えられる。何ものかが10億分の1個だけ反粒子を粒子に変えたことで9億9999個の粒子は反粒子とぶつかって消滅しても、粒子は2個生き残り、星や銀河、そして人類へとつながっていくことになる。
さらに宇宙が1億キロメートルまで大きくなったところで、ビッグス粒子が凍りつく.宇宙がギュッと凍りついたおかげで、素粒子の世界に秩序が生まれ、多くの素粒子に質量が与えられるようになった。
このようにして始まった宇宙はゆっくりと膨張しているので、だんだん冷えていく。
 宇宙が100億キロメートルになると、消滅が止まり、生き残る数が決まる。これが今残っている暗黒物質だと考えられている。さらに宇宙が3000億キロメートルになると、クオークが強い力で閉じ込められて、陽子や中性子になる。中性子はすべてヘリウムの原子核に組み込まれている。宇宙が誕生して38万年後になると、落ち着き、1000万年光年ほどの大きさに落ち着く。まだ3000度Cあるが、原子核と電子がくっついている原子ができるようになる。
 暗黒物質の重力に引き寄せられて、原子が集まり、これが星になり、星がたくさん集まって銀河をつくる。宇宙で最初にできた元素は水素とヘリウム。星は人類の体のもとになる元素の製造マシーン。ただ、星の核融合によって出来るのは鉄まで。
 超新星爆発が鉄より重い元素をつくる原動力になる。超新星爆発は、新しい星の材料となるガスやチリを宇宙空間にばらまく。このばらまかれたガスやチリは、重力の重い場所に集まり、新しい星をつくる。地球は太陽をつくるために集まってきたガスやチリの一部でつくられている。その地球上で誕生した人類の体は、星のなかでつくられたものだから、まさしく人間の体は星屑でつくられていることになる。
 物質には反物質があり、両者が出会うと消滅するというのは、かつて私が読んだ、SF小説にありました。サイエンス・フィクションと思っていたら、こうやって学説として生きているのですね。そして、その小さな差が宇宙をつくっているというのです。そのとき、ニュートリノという小さな粒子が立派な働きをしています。
 ヒッグス粒子というのは、角砂糖ほどの空間に、10の50乗兆個もあるというのですから、なんのことやら想像を絶します。
 生まれたばかりの宇宙が原子よりはるかに小さいものだったというとき、その前は無だったというわけです。では、この広大無限の宇宙は無限に存在するというのでしょうか。
 地球も太陽も、そして銀河系宇宙も有限だということです。しかし、無限の存在があるのか・・・。気宇壮大なことがぎっしり詰まった、小さな新書でした。たまには宇宙の話を読んで気晴らししましょう。
(2013年1月刊。800円+税)

2013年11月 2日

銀河と宇宙

著者  ジョン・グリビン 、 出版  丸善出版

たまには、銀河と宇宙のことを考えてみるのは必要なことではないでしょうか。
人間の死後を考えたら、人間をつつむ銀河と宇宙がその後どうなるのか、考えずにはあれません。
 銀河がどのような最期を迎えるのかは宇宙の運命にかかっている。その宇宙の運命については三つのシナリオが考えられる。その一つは、宇宙が今日と同じ程度の加速膨張を続けていく。その二は、加速膨張の加速の程度がしだいに増えていく。第三は、それほど遠くない未来に加速傍聴に転じ、最終的には宇宙がビックバンを時間反転したビッグクランチとよばれる高密度状態になる。もし、宇宙の膨張が十分に長く続くなら、最終的にはガスとダストを使い果たして、宇宙のなかのすべての星成長活動が終わるだろう。
 銀河は1兆年という長い時間のうちに、暗く、赤くなるのに加え、やせ細って小さくなっていく。これを銀河の最期とみなすことができる。
 ブラックホールもまた同じように最期を迎える。ブラックホールも蒸発してしまう。
 現在の宇宙年齢の10倍の時間以内に、局所銀河群のメンバー銀河の合体からできた超巨大銀河の「島宇宙」がしだいに輝きを失っていく様子以外には何も見えなくなるだろう。
 その二のシナリオでは、いまから200億年のうちに必ず最後が来る。原子とすべての粒子は引き裂かれて「無」になり、その後には平坦で空虚な時空が残る。この空虚な時空から新しい宇宙が生まれて、銀河系がふたたび生まれるという考えもある・・・。
 その三のシナリオは、ビッグクランチの20億年前になると、もはや生命は存在できず、銀河は壊されて乱雑な星の集まりとなる。最後から100万年たらず前の時点で星の内部にあるものも含めてすべてバリオンが、それを構成する荷電粒子の成分に分解される。そして、物質と放射がふたたび密接に結合する。
 宇宙の大きさが現在の100万分の1になり、温度が星の内部の温度とほぼ同じ1000万度Cをこえると、星の中心核といえども火の玉のなかで溶融する。最終的には、すべてのものが特異的の中に消滅する。
 そして、この本は次のようにしめくくります。これを呼んで、ほっとひと安心というところでしょうか・・・。
 銀河は数千億年、現在の宇宙年齢の10倍以上の期間は安全で、人類とは別の知的生命体の観測者たちが、それがどんな最後を迎えるかを正確に理解するまでに十分な時間がある。
 私は、それよりも、原発なんていう人類のコントロール不能のものをかかえたまま、原発の操業再開だとか海外への輸出だとか、ましてや日本の原発を狙ったテロとか、そんな状況では、地球上の人類の生存こそ今や危機に直面していると改めて思いました。
(2013年7月刊。1000円+税)

2013年6月28日

大隕石・衝突の現実

著者  日本スペースガード協会 、 出版  ニュートンプレス

隕石が日本の原子力発電所に落ちたらどうなるのか・・・。
 これは、政府も原発関係者も、想定してはならないとする設問です。その正解は、日本列島の大半が汚染されて、人々は住み続けられずに列島外へ脱出するしかないということです。かつてのユダヤ民族のディアスポラ(民族離散・脱出)が始まるのです。
 原子力発電所にあった核燃料がむき出しになってしまえば、もう誰も近づけません。手のうちようがないのです。それを承知のうえで、いま、日本政府と原発企業は海外へ原発を輸出しようとしています。当面は輸出代金が入ってきて日本経済にいくらかプラスになるのかもしれません。でも、いったん不具合が発生し、事故になったとき、日本政府が不具合の責任を追及される可能性があります。その額が天文学的な巨額になったとき、私企業では負担しきれず、政府が負担することになります。もちろん、それは日本国民の納めた税金です。当面の「利益」に目がくらんで輸出した人は既にこの世を去り、責任をとりません。後世の人々が責任をとらされるのです。こんなひどい事態をつくり出す企業を「死の商人」と呼ばずに、何と呼びましょうか・・・。
 この本を読むと、隕石というのは、宇宙から地球へ頻繁に落下していることがよくわかります。ロシアや南極大陸だけに落下しているというのでは決してありません。怖い現実です。
地球にニアミスする小惑星は毎年、数個ある。
 1908年6月30日、ロシアでツングースカ爆発が起きた。地上から6キロメートル上空での爆発だった。このツングースカ爆発は、2000平方キロメートル以上もの地域に拡がる森林を荒廃させ、爆心地から20キロメートル以内は高熱によって炎に包まれた。爆発規模は、広島型原爆の1000倍の破壊力をもつ、20メガトンだった。
 地球は何もない空間を孤独に運動しているわけではない。むしろ、数多くの天体軌道の間をすり抜けるようにして運動していると言ったほうがよい。したがって、他の天体との衝突という問題は、避けては通れないものなのである。
 小惑星は確定番号がついたものだけでも30万個以上ある。その数は60万個以上におよぶ。今までに発見された彗星は3000個あまり。このうち長周期彗星は2800個、短周期彗星は280個である。
恐竜が絶滅したときの小惑星の衝突(メキシコのユカタン半島)は直系10キロメートル程度の小惑星だった。その衝突エネルギーは1.2億メガトンだった。津波は高さは数千メートルと推定されている。
 直系100メートルの小惑星が衝突しても、関東平野程度の範囲は壊滅する。
 このサイズの小惑星が地球へ衝突する確立は数百年に1回である。
 隕石が地球にぶつかるのは避けられないし、その被害たるや甚大なものがあります。その被害を加速させる原発なんて、地球上に置いてはいけないのです。
(2013年4月刊。1400円+税)

2013年5月18日

月の名前

著者  高橋 順子 、 出版  デコ

満月を眺めるのは、いつだって心地よいものです。屋根の上にポッカリ浮かぶ大きな満月は頭上にあるより親しみを覚えます。
 夏の夜の楽しみは、ベランダに出て天体望遠鏡で月の素顔をじっと観察することです。まるで隣町のように、くっきり表面のでこぼこを観察することができます。下界の俗事を忘れさせてくれる貴重なひとときになります。
 9月の中秋の名月を祝うのは、このころの月が美しいからというだけではない。気温は快適だし、月の高度もよろしい。しかも、もっと説得的な理由は、芋名月、栗名月、豆名月という名称からも察せられるように、このころが秋の農作物の収穫の時期だということ。
 お月見は、農作物の豊穣を月の神に感謝し、来年の豊作を祈願する秋祭の一つだ。
 この本は、月にちなむさまざまな呼び名を、写真とともに紹介しています。知らない呼び名がたくさんありました。
 十七屋。江戸時代の飛脚便のこと。たちまち着きの語呂あわせから。
 今宵は中秋の名月
 初恋を偲ぶ夜
 われらは万障くりあはせ
 よしの屋で独り酒をのむ
「われら」と言いながら、「独り酒、をのむ」というのも奇妙ですが、フンイキが出ています。
 月には、中国古代の伝説では、仙女、桂男(かつらおとこ)、ヒキガエル、兎などがすんでいた。兎は、不老長生。仙薬を臼でつく。この兎は韓国や日本では餅をつく。桂男とは、月の中に住むという仙人。転じて、美男子をいう。月の桂を折るとは、むかし文章生(もんじょうせい)が官吏登用試験に及策することをいった。
 菜の花や月は東に日は西に
与謝蕪村がこの句をつくったのは、1774年(安永3年)のこと。58歳の蕪村は、当時、京都に住んでいた。
名月をとってくれろとなく子哉
これは一茶の句です。いいですね・・・。
(2012年10月刊。2500円+税)

2012年8月20日

地球全史

著者   白尾 元理・清川 昌一 、 出版   岩波書店

 宇宙の中から地球が形づくられ、そこに生物が誕生していくさまが、地球上のさまざまな地点の写真と共に描き出されています。やはり写真の迫力にはすごいものがあります。
 46億年前。地球は、無数の微惑星が衝突・集合して形成された。初期の微惑星は、直径10キロメートルほどの小惑星や彗星のような天体だったと推測される。
 月には直径500キロメートルもの巨大なクレーターが数多く残っているが、これは、40~38億年前の激しい衝突の時期にできたもの。月にはプレート運動がなく、水や大気もないので、遠い過去の記憶が残っている。
7億年前、地球全体が厚い氷に覆われていた。地球表面の全部が凍りつき、宇宙からは雪玉(スノーボール)のように見えた。
 このスノーボールから地球を救ったのは、火山が供給した二酸化炭素。
 5億年前、スノーボール・アースが終わった直後、エディアカラ動物群が出現した。カナダのニューファンドランド島には、たくさんの化石が認められている。
5億年前、三葉虫とアノマロカリスが出現し、その化石がニューファンドランド島に見られる。
4億年前のサンゴ化石がバルト海のゴトランド島に見つかる。
 3億年前。アイルランド島に両生類の足跡化石が残っている。
1億5000万年前。アンモナイトの化石の壁がフランス・アルプスにある。
 同じく、ドイツ・バイエルン州には始祖鳥の化石が見つかった。さらに、アメリカ・ユタ州には恐竜化石が大量に発見されている。
4000万年前。エジプトにクジラの祖先の化石が見つかっている。クジラの祖先は、5000万年前のオオカミに似た哺乳類、パキケトゥスである。
 200万年前。アフリカ・タンザニア北部のオルドバイ峡谷から原人ホモ・アビリスを発見した。
いま、地球上には70億の人類が住んでいる。この総重量は330兆グラム。これに対して牛が650兆グラム、豚が170兆グラム、羊が120兆グラム、馬が20兆グラムで、人類と家畜を合計すると1350兆グラムである。
 これに対して、陸上の野生動物の合計総重量は150~300兆グラムで、人類と家畜合計の5分の1にすぎない。
 すごくスケールの大きい写真集でした。
(2012年4月刊。4400円+税)

前の10件 1  2  3  4  5  6  7  8

カテゴリー

Backnumber

最近のエントリー